1. What the course looks like pedagogically

From the document :

Key characteristics of your course

* Audience: Teenagers (14-18) with basic programming experience.

* Method: Strongly hands-on, learn-by-doing. The “Pedagogical Notes” (p.18) explicitly
state this.

* Structure: 15 sessions, each building a concrete Unity/VRChat feature.
* Progression:

* From setup — basic world -~ HUD - gameplay logic — networking — multiplayer
— game loop - restart system — handling late joiners.

* Technological demands: High—Unity, VRChat SDK3, UdonSharp, networking logic, VR
interactions.

* Continuous testing & iteration: Every exercise requires testing in Unity Editor and
multiple VRChat instances.

* Final assessment: Students create and present their own multiplayer VRChat game.

Together these indicate:

v Active learning

v Situated, contextualised problem-solving

v Technology-dependent instruction

v Clear step-by-step performance tasks

v Incremental competencies leading to a final project

2. Evaluating each instructional model
against your course

<> ADDIE (Analysis — Design — Development —
Implementation — Evaluation)
Strengths for your course
» Helps structure the entire course lifecycle.
* Good for complex technical content that must be planned in stages.
* Works well for project-based curricula.

Limitations for your use case



* ADDIE is too high-level for session-by-session classroom guidance.
* It does not focus specifically on technology integration nor classroom execution.

* The course is already created, so ADDIE’s main value (big design planning) is partially
done.

Fit: %% % 77 v¢ (medium)

ADDIE is useful but not the most accurate match.

<> ASSURE (Analyze Learners — State Objectives — Select
Media & Materials — Utilize Media — Require Learner
Participation — Evaluate & Revise)

Why it fits very well
ASSURE is built specifically for technology-mediated, hands-on, classroom instruction, which
matches your course perfectly.

Your course explicitly follows ASSURE-like patterns:

A — Analyze learners

Your document defines:
* Agerange
* Prior knowledge (basic programming)
* VR/non-VR usage issues

* Multiplayer coordination needs
(See page 1 for target audience details.)

S — State objectives

Each session has:
* A clear goal

* A clear deliverable
Examples:
v “Goal: In this exercise we will create the basic layout...” (p.2)
v “Deliverable: A simple enclosed arena...” (p.2)

S — Select methods, media, materials

Your course requires:
* Unity Hub
* VRChat SDK
*+ VCC



* VR Testing instances
(See Step 3 of Session 1.)

This is pure ASSURE methodology.

U — Utilize media & technology

Students work directly with:
e Unity
* VR hardware
* VRChat client
* Networking
* Game testing tools

Technology is not a complement—it is the medium of learning.

R — Require learner participation

Every session includes:
* Construction tasks
* Debugging
* Multiplayer testing

* Rebuilding and retesting
(Strong participatory learning.)

E — Evaluate & revise

Students evaluate functionality every step:
* “Test in Unity Editor”
* “Test in multiple instances”

* “Fix behaviour...”
Also final assessment: functional multiplayer game (p.18).

Fit: Y% %% (excellent)

ASSURE matches your course almost perfectly.

< CD/CI (Content Development / Cognitive Instruction)

This model is useful for:
* Cognitive sequencing
* Scaffolding conceptual knowledge

Your course, however, is:



» Highly practical
* Less theory-driven

» Centered on technical tasks, not cognitive conceptualisation

Fit: %k Yo veve (low)

Some elements apply (progressive scaffolding), but not enough.

< ARCS (Attention — Relevance — Confidence — Satisfaction)

ARCS is a motivation model, not a complete instructional design model.
Your course already implements motivational strategies:

* Attention: VR, hands-on, game building

* Relevance: Teenagers love VR/Unity/games

* Confidence: Clear step-by-step tasks with predictable results

» Satisfaction: Students build a full multiplayer game

But ARCS cannot structure the whole course by itself.

Fit: %k 7 ¥ (medium)

Great as a supplement but not as the primary model.

3. Final conclusion

¢ The best tecnopedagogical instructional model for your
Unity & VRChat programming course is: ASSURE.

Why ASSURE is the strongest match:

* Your course is fundamentally technology-based — ASSURE specializes in tech-enhanced
instruction.

* Each session already aligns with ASSURE steps (goals - media — participation —
evaluation).

* The learning process is active, iterative, and test-driven, a core expectation of ASSURE.

* Learners must work with VR devices, Unity Editor, VRChat instances - ASSURE
explicitly integrates media utilization.

* Ideal for practical, procedural skills with real-time testing and peer collaboration.

Secondary Support Models:

* ADDIE - Useful for your overall course planning (macro level).



¢ ARCS - Great to enhance motivation but not sufficient alone.

* CD/CI - Limited relevance for this practice-heavy course.



	✅ 1. What the course looks like pedagogically
	Key characteristics of your course

	✅ 2. Evaluating each instructional model against your course
	🔹 ADDIE (Analysis – Design – Development – Implementation – Evaluation)
	🔹 ASSURE (Analyze Learners – State Objectives – Select Media & Materials – Utilize Media – Require Learner Participation – Evaluate & Revise)
	A – Analyze learners
	S – State objectives
	S – Select methods, media, materials
	U – Utilize media & technology
	R – Require learner participation
	E – Evaluate & revise

	🔹 CD/CI (Content Development / Cognitive Instruction)
	🔹 ARCS (Attention – Relevance – Confidence – Satisfaction)

	✅ 3. Final conclusion
	⭐ The best tecnopedagogical instructional model for your Unity & VRChat programming course is: ASSURE.
	Why ASSURE is the strongest match:
	Secondary Support Models:



